
7 -A192 471 A CLASSIFICATION OF AUTOMATIC PRORAM SYNTHESIS SYSTEMS 1/1
(U) NEVADA UNIV LAS VEGAS DEPT OF COMPUTER SCIENCE AMD
ELECTRICAL-. T A GROSS ET AL. 19 JAN 68 CSR-S6-Sia

UNCLS1FIED AO-24960. S-NA DAAL3-B?-G-S664 F/fl 12/5 N

I EEhhhE~h~ImIL ?Illfff

1.8

I 2 III_
- - Ie*---- e efet".F

~~ I

A Classification of Automatic Program
Synthesis Systems

Todd A Gross
Thomas A Nartker*

Department of Computer Science and Electrical Engineering
University of Nevada, Las Vegas

January 19, 1988

Department of
Computer Science and
Electrical Engineering

-Pm

U- Unvrst

University of Nevada, Las Vegas
Las Vegas, Nevada 89154

~884 11 2i
8

nTIP I:LE .1 € _. *,OR.

UNLSIID T L (tPR COPY -FOR REPRODUCTION PURPOSES
SECURITY CLASIFIAION Or THMSPAGE

REPORT DOCUMENTATION PAGE
ORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Une1 nAgIf4t __

:URITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

CLASSIFICATION I DOWNGRADING SCHEDULE - Approved for public release;
Cdistribution unlimited.

FORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UARO 24960.8-MA

kME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

U. S. Army Research Office

)DRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Las Vegas, Nevada 89154 P. 0. Box 12211
Research Triangle Park, NC 27709-2211

go. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION iOf licable)

U. S. Army Research Office DAAL03-S7-G-0004

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM IPROJECT TASK WORK UNIT
ELEMENT NO. NO. ,O. ACCESSION NO

Research Triangle Park, NC 27709-2211 E N I

11. TITLE (Include Security Classification)

A Classification of Automatic Program Synthesis Systems

12. PERSONAL AUTHOR(S)

Todd A. Gross and Thomas A. Nartker
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Tpt-hnieral I FROM TO• January 19. 1988 14

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

of he authqr(?).and sh uld not be const ued as an fficial D partment of the Army position,

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverw if necessary and identify by block number)

FIELD GROUP SUB-GROUP Computers, Automatic Program Synthesis Systems

1.9. ABSTRACT A great deal of attention has been paid lately to improving the process of devel-
-"oping software. Most of this attention has been directed to the development of

tools to perform tasks for the user (e.g. editors, debuggers) and environments to
integrate these tasks. This paper, however, is about another method of stream- GDT ICTE
lining software development: creating programs to generate the software for us. EL
That is, we tell the program what type of software we want to generate and it APR 1 11988
generates the software for us. This process has been given many names.

-- - 1 " -.In this paper, we shall refer to this D
process as automatic program synthesis, or APS. D

In Section 2 we define the term automatic program synthesis. Section 3 gives
a set of classifications of varios APS systems. Section 4 gives the authors' con-

clusions about existing APS systems and about the field of automatic program
synthesis in general. Section 5 comments on the related yet distinct area of
application generation. '

20. DISTRIBUTION/ AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
rOUNCLASSFIEDIUNLIMITED 0 SAME AS RPT. C3 OTIC USERS Unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Are Code) 22c. OFFICE SYMBOL

dI

DO FORM 1473,64 MAR 53 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASSIFIED

Si,,

5dSi. "S'% ''• ,.' 5~~~*' ~ o.' • e

A Classification of Automatic Program

Synthesis Systeis

Todd A Gross

Thomas A Nartker°
.

Department of Computer Science and Electrical Engineering .

University of Nevada, Las Veg,,

January 19, 1988

Report CSR 88 02
,

' IV.

..

II

"Suportd b theU. . Amy Rseach l~e undr GantD AAO3-,.GO004
. ::",a

A Clssifcaton o Autmatc Prgra

Synthsis Sstem

%

A Classification of Automatic Program Synthesis

Systems

Todd A. Gross
Thomas A. Nartker

Dept. of Electrical Engineering and Computer Science
University of Nevada, Las Vegas

January 19, 1988

S

1 Introduction

A great deal of attention has been paid lately to improving the process of devel-
oping software. Most of this attention has been directed to the development of
tools to perform tasks for the user (e.g. editors, debuggers) and environments to
integrate these tasks. This paper, howevet, is about another method of stream-
lining software development: creating progranns to generate the software for us. .
That is, we tell the program what type of software we want to generate and it
generates the software for us. This process has been given many names: auto-
matic programming [2,7,25], program generation [14,29], synthetic programming ..

[161, program construction [4,371, program writing [28], metaprogramming [27]
and autoprogramnuing [9] among several. In this paper, we shall refer to this
process as automatic program synthesis, or APS.

In Section 2 we define the term automatic program synthesis. Section 3 gives
a set of classifications of various APS systems. Section 4 gives the authors' con-
clusions about existing APS systems and about the field of automatic program
synthesis in general. Section 5 connents on the related yet distinct area of
application generation.

2 What is Auiomatic Program Synthesis?

It is important that we have a clear definition of automatic program synthesis,
because there are several types of systems that perform tasks similar to those
outlined in this paper. For instance, compilers accept descriptions of what we
want in the form of higher-level programs and produce software in the form.
of machine code. We do not consider compilers to be APS systems, because -i

all necessary information about the problem, including a step-by-step solution, -.

'',

is provided by the user. It is worth noting, however, that many authors see
higher-level languages as in the realm of automatic program synthesis, see for r
instance [6,14,23].

It is easier to clarify what we mean by breaking the term "automatic program
synthesis" into its three components. Automatic means with the aid of the
computer. Clearly, computers must play a role in the creation of programs, but
perhaps less clearly, they cannot perform the entire task for us. The part of the
task they do perform is called synthesis, and will be defined later.

A program, for the purposes of this paper, is the object we generate using
our APS system. It is a series of statements that, when executed, produce
the desired output given all necessary inputs. Usually, the program is written V
in an executable higher-level language, although some papers [15,31] used a
nonexecutable algorithmic language.

Synthesis is the process of creating code by computer. Many different
types of programs synthesize code--including compilers, editors, optinmizers, and
decision table systems (discussed in [141). In APS systems, code is generated

from a nondeterministit description of the program. Which means that the
description allows for several possible programs to be generated. Put another "
way, the description says what we want the generated program to do, not how
we want the program to do it. The description, being nondeterministic, cannot
be a program itself-it must be transformed into a program by the APS system.

We now define automatic program synthesis as the generation by the com-
puter of a program (or programs) given a nondeterministic description of the
program(s). All systems mentioned in the remainder of this paper (excepting
those described in [14]) conform to this definition.

3 Classifying APS Systems

One can view the process of automatic program synthesis from two perspectives:
that of the person who designed the APS system, and that of the person who
uses it. From the user's perspective, the APS system is basically a black box:
one gives it a description of the program one wants generated, and after some
calculation it returns the desired program. Thus from the user's perspective,
the most important aspect of the APS system is how one describes the program e
to the system. Formally, we call the program description a specification.

From the designer's perspective, the system is a good deal more complex.
There are two major components of the APS system: the knowledge base and
the code generator. The knowledge base contains information about how to op-
erate on the specifications, and the code generator takes this knowledge and the
specifications and generates the program. Note that this is by no means a clean
division-in some cases the "knowledge base" is basically a set of predicates
buried inside the code generator [10], in others the "code generator" is basically
the actions taken by the knowledge base [30]. Still, it's an important distinction

2

It N %,

I - . - - . -. -_ W ' 'WjW '

p.

I

to make, because the APS system designer can decide how to interconnect the N
two components to best suit the type of problem he or she wishes to solve.

3.1 Classification of Specifications

There are several basic means of specifying one's problem-logical predicates, P%

input-output pairs, program traces, and natural language sentences are the most
coi lon.

Logical predicates are the oldest [39] and most common (13,15,16,20,21,22,
26,30,31,35,36,39] means of specifying inputs to APS systems. Typically, the
specification would look something like:

(Vi 2 D)[f(i, o) - . p(i, o) A o c RI

where f is the program we want to create, i and o are the input and output
to the program, D and R are the domain and range of the program, and p is
a first-order logic sentence using bound variables i and o. Different systems,
however, will use somewhat different logical forms. For instance, in [15], the "

universal quantifier is assumed and thus left out. In DEDALUS (in [30]), the• ' specification structure is less formulaic and instead of f(i,o) being a relation

between the input and output we have o -2 f(i) where f is a function on the
input. These formulae are logically equivalent. As an example of a logical
specification, we give one for finding the maximum element in a list:

(VL C £)[iax(L, rz) in L A (Ve c L)(m e] A ni C Z]

where C is the set of all lists of integer., Z is the set of all integers, and m is
the maximal element of the list. %

Input-output pairs have been used in fewer systems [10,11,37], despite their
relative simplicity. One merely provides a set of inputs to your desired solution S.

and the corresponding outputs. For instance, in the case of max we might give: V

() -> nil (1 2) -> 2 '.

(1) -1 1 (2 1) -> 2

b
where the left side of the arrow has our input list and the- right sid, our desired

output.
Specification by program trace has been used in a few systems: autopro-

gramier 18,9), I'' [33]. and PSI [21,221. autoprograinier must he given a
step-by-step execution of statements, but I'(' and PSI need only be given snap-
shots of memory and conditional tests. As an example, we'll do a sample run Vi
of max on the list (2 1) as autoprogrammer would do it,

3 , B
ON
%.
.

4.

~~~~~~~~~~~~~~~~.. ..... -"..-. ... . . .----- ' ."-."-...."--....'-'....""..,"'.""G"-"" ' """



- % .

-I
N 'u ,

store (2 1) L car L e
store 0 In note e < III
car L e cdr L L F-
note e > IIn note L nil 2

store e II stop
cdr L L

where store X Y assigns the value of X to Y, car X Y assigns the car of X '.
to Y (and similarly for cdr). note doesn't perform any operation, but informs '.
the program synthesizer that we tested a condition. Actually the example given
wouldn't work in autoprogrammer-that system only performs numerical com-
putations. Nonetheless, the formats are very similar. It should be noted that
autoprograinmer can induct much of the program for us, saving the user the
effort of specifying these parts. Memory trace systems can't do this at present,
as it is far more difficult to induce a pattern from a set of memory snapshots.
As one must do some programming oneself, program traces are an imperative,
rather than a declarative specification.

Natural language specifications are straightforward enough: one uses English
sentences to describe the problem. Naturally, one is restricted to a predeter-
mined subset of English--one is also usually restricted to a specific problem
domain. For more information, consult [25].

3.2 Classification of Program Synthesis Mcthods S

As stated before, there are two aspects of synthesizing a program from a set of
specifications: that of having a body of knowledge for operating on the speci-
fications (which we labelled a "knowledge base"), and a system for using that
information to generate code (ihe "code generator"). The knowledge base for
an APS system is closely related to the method of specification, in the same
way that parsers are closely related to lexical analyzers - just as parsers convert
tokens to syntactic structures that are later converted to code, so our knowledge
base converts specifications to procedural structures that are later converted to .
code. Therefore, we list each specification method and discuss the corresponding
knowledge base: .

Logic statements The knowledge base contains logical axioms like

f(r) (f(r) ,, )) , (f(Z)' '.g())

and axioms of nonlogical constructs like

(I C e.L)jf(Y)j f (4 (3z L)[f (x)]

where c.L amid L are lists of .lemients. S

Input-output pairs The knowledge base contains rules and information that
enable us to induct on the examples. That is, it allows us to apply the
rules uncovered in the exanmples to more general inputs.

%

- ,



I-

W777

Program traces The knowledge base contains rules on constructing generic
tests and code constructs (loops, branches).

Natural language The knowledge base contains rules for converting human
language into an internal unambiguous representation.

Classifying code generation techniques is more difficult. In some cases, the
method of code generation is determined by the knowledge base but in others it
isn't. For instance, if we use some sort of semantic network to represent the de-
sired program (as in [4,25,28]), the code generator will clearly need to transform
semantic structures into program statements. However, if we've represented our

knowledge in the form of logical axions, we call either store these in a data base
and invoke them when they match our partially-derived specifications (as in f'.-
[30]) or else we can embed these axioms in the code generator itself (along the
lines of [10), but more like the decision table system as in [14]).

Basically, all methods of code generation involve translation, from an inter-
nal representation of the problem to a forim a compiler can utilize. If either
representation scheme subsumes the other, the translation can be purely syn-
tactic. For instance, in most logic-oriented systems 113,15,16,26,30,35), the code
generator sees both the final derivation of the specification and the code it is
to construct as a string of tokens. Thus, one need only replace tokens with to-
kens. But if neither representation can subsume the other, there must be sonic

semantic translation. For example, in most "knowledge-based" APS systems
[1.4,25,28], the internal representation is a semantic network. Transformation
of a semantic network to a program is nontrivial--indeed, most systems use
heuristics to perform the translation rather than provably correct algorithms.
Likewise, program trace systems internally represent the problem as a flow dia-
gram, which also requires syntactic translation to generate linear code. Thus, it
would appear that syntactic versus semantic translation is a fundamental clas-
sification. But there are other equally important hut less universal means of
classifying synthesis methods:

* Several systems use an internal knowledge base in the process of generating
code. For instance, PSI has an internal model system that serves as in-

termediate code between the tiser's specification ant the code generation.
PROTOSYSTEM-I has several internal languages. But logic-oriented sys-
temis in general have no such interlingua.

" Some synthesis algorithmis approach the problem from a nonstandard per-
spective. For instance, TRINS [38] uses an Al approach to choose between
rules. programwriter incorporates ai idea list in the course of generating
problems. Novel ideas will require novel ,means of classification.

. "-%"%.

.- ... ... . , .. , .-. ,-.- - .- ..--:-.- - .. --.(.. ,. .% .;...'..'. ,.



4 Conclusions

Having classified the existing methods of automatic program synthesis, we can
now make some conclusions about APS system- in general. First of all, it is
clear there is still much work to be done. In most cases, the programs generated
were ones a competent programmer would have little difficulty constructing. As "

°' 5'.

Summers says in [37): "No paper onl automatic LISP prograinining is complete [[
without ... the program reverse." Reversing a list of elements is typically one of .->
the first recursive programs a student is taught. Systems with input-output pair ..
specifications (like [371) tend to restrict themselves to transfer problemls-that
is, problemis where the input is copied to the output without any modification. .
Some systems, like prograinwriter [28] and PSI [4], liave attempted realistic ','
problems, unfortunately the authors don't know how successful they were or .
what range of problems they attempt to solve. There is relatively little available %,
commercially, and even what is out there has been slow to be accepted (141. Q

Some companies, like A'F&rT [19] and Schluniberger [31, are developing their
own APS systems. "

It is also clear that different method% have their advantages and disadvan- ,
tages. For instance, logic-oriented systems can be used for any computable ,
problem and involve mostly syntactic transformat ions (which are relatively easy "'
to generate). However, the specifications are difficult to produce correctly for ,
nontrivial problems (although systems like DEDALUS are more approachable).
Natural language systems are easier to give specifications in, but require vast .

amounts of information to decode the specifications, thu~s the problem domains "
are usually quite limited. A lot of work has been done in both these areas, and "

there appears to be no consensus on which specification method should be used. ""

Despite a lack of commercially sound results, there are many good reasons',.-
for developing A PS systems,: '' :'I-..

In ossiftie exi,281tng e cdeo a eutomainterrelat program asynthesis,

one time. :}":

n Ir many cases (io92]ns an ay input-output sgysten), one call provide a
partial specification and the systeIn will cither make assumptions about
the rest or prompt fr more informati s (or both). iptuupa

s i t ( ] o t eh

is, roblms heretheinpu is opid totheoutpt wihou anymodficaion



. ,.iw,,,t q. v' .5p d. : .' . ..t , .- , ..d J , -, .= £ 
'2  "  

1'''= x" -"'. i,

.5'

e Especially with logic-oriented systems, the software is provably correct.

For these reasons and others, it is important that we continue to research
the development of provably correct and commercially sound APS systems. The
reader is referred to [5,6,7] for more information on specific APS systems and
methods.

5 Final Remarks

In writing this paper, the authors focussed their attention on a relatively re-
stricted set of systems, namely those that generated complete programs with no ..r

foreknowledge of the program desired. That is to say, systems that generated
programs knowing only the inputs to the program, the desired outputs to the
program, and one or more techniques of creating code that will generate the de-
sired outputs from the inputs. Several of these systems had a restricted domain
(NLPQ, for instance, restricts itself to programs that simulate servicing a queue
of customers [25]), but the knowledge of the domain does not include predefined
methods of generating programs that solve problems under that domain.-%

In choosing to restrict our attention this way, the authors neglected the
highly commercial and productive area of application generation. Although .'.r
many systems mentioned by Cardenas [14] would fall under this category, of ?-..e
more interest are screen and report generators, particularly as elements of so-0
called fourth generation language (4GL) systems. These generators use standard
text formatting routines (much like curses in the UNIX operating system), but
are incorporated with a database management system. This saves a lot of effort
in generating customized interfaces between the user and the application, and
is therefore highly valuable.

Generally speaking, an application gencrator creates programs that perform
specific tasks using well known, optimized (i.e. precoded) techniques. The sys-
tens in Cardenas' paper produce source code, most 4GL systems produce object
code. Application generators share many of the same valuable characteristics of ,%
program synthesizers--including portability, ease of modification, and greater
use of hardware to generate software. And they are available for use the general
public. But on the downside, specifications are either programs (in the case S
of 4GL systems) or answt-rc to prerestricted questions (in the case of decision
table/questionnaire/ostomuirig systems). Further, they can only be of limited
use in generating programs that we have no apparently optimial solution for.
One can see why research has concentrated on synthesis of programns, rather
than generation.

Of course, there has been a good deal of research in program generation, 0
particularly generation of parsers and compilers [32.341. Interesting research

in program generation has been done even in recent years, in areas as diverse
as Gaussian elimination [3] and generic user interfaces [17,181 While inany

"00
If % %r %,r % %



%=,.

of these generators work in less understood Problem domnains using less lin-

derstood algorithms than application generators--and indeed less understood .
domains than many APS systems work under-we always know in advance what"".

prograims will be generated, barring errors in the design and/or implementation _
of the generator. And this makes the generator a tool rather than an object of.-,.
research."',

V V~ ~ ~ ~ ~~ u'. J ,Y

References""-

[1] Automatic Programming G;roup. Projfrt AA Progress. Report X. Tech- -.

nical Report, Massachusetts Institute of Technology, Cambridge, INIA, J ul ._=

1973. Page 172-191. % ,-

[21 R Balzer. A 15 year perspective on autoinatic programming. IEEE Tr'ans- ,'
a ctions on Software' Enginc+rin9, SE-I 1( 11):1257 -1268, 1985. ,'

a'

[3] D Barstow, R Duffecy, S Snioliar, and S Vestal. An atitomiatic programming ,r,

system to support an experimental scienice. In Iroccedmngs of the Sirth In- .%'.
ternational C'onference on .Software Engineering, pages 360-366, Sep 1982., "

[4]1 I) R Barstow. h'nou-(dgc-1Ba,'d Program C'on.struction. North-|lolland,"
New York, 1979.

(5i A Bierniann, (G Gniho. and Y Kodratoff. Automnatic Program Construction ..

Terhniques, chapter 1. Macmillan, New Y(,rk. 1984. titled An Overview of
Automatic Program C'onstruction Tlechtniques. "

!1A W Bierniann. Advances in Comt, utc'r., pages 1 6;3. Volume 15, Academic

Press, New York, 1976.

[71 Ak W Bierniann. Auitoinatic programming: a tutorial on fo~rmal inethod- , '

olhogies, Jo urnal of S¢ymbolic (Compulatton, 1 :119- 142, 1986.,

-.

A W Biermann, H I Bauin, and F Petry Speeding upl the synthesis of i.
programs froin t races. IEFF 7ran.,acti,,,L on (Compute','., C-241(2):1 22 136, -.
197S

91 A W Ifierinarn and R Krishnas~ann v. C'onstrneiing progranv, froin ex- - ',

ample coniputtatlois. /FE]: 7ransarto?),q on Stoflurare, Enginccrinq, SE- ...
2(3):141 153. 1976; %%-

:.,.:.

101 A W Biritmn and ) ap pmith. A prdurti rule n echanidie fdr geleer-ssu
d tating LISP than m Ae sy'e wranarkunIr-a. l an .,kn in avn ce ( nw a

SM(-9( ):2;t)276;. 1979 ,"

1o T wJ Biggerstaf td. ( b:a. r 'u,'r rointl d" pp'oait Autoatc Pogram-
mn . Phl thesis, University nf tashingto, Seattle A, Jan 197MA, Jul

0 o ofN, n

%, " D "so , D'e", S S i and ''.Vestol. Aatmiprrmn 0 % %'7-

+, r,+ :=' ,-++ ', t' ys t em''.+- to suppt an. " experi ' . ental+ s.ciece. In ". 'roceding of. +t'.he S ,e.zth in-"...'-'', . '," :.''' +''



7p.v

[12] B W Boehm. Software and its impact: a quantative assessment. DATA-
MATION, 48-59, May 1973.

[13] R M Burstall and J Darlington. A transformation system for developing
recursivu programs. Journal of the Association for Computing Machinery,
24(l):44-67, 1977.

[14] A F Cardenas. Technology for automatic generation of application
programs-a pragmatic view. MIS Quarterly, Sep 1977.

[15] K L Clark and S Sickel. Predicate logic: a calculus for deriving programs.
In Proceedings of the Fifth International Joint Conference on Artificial In-
telligence, pages 419-420, Aug 1977.

[161 N Dershowitz. Synthetic programming. Artificial Intelligence, 25(3):323-
373, 1985.

[17] P Dewan. Automatic Generation of Uspr Interfaces. PhD thesis, University
of Wisconsin, Madison, WI, Aug 1986.

[18] P Dewan and M Solomon. Dost: an environment to support aiitomatic gen-
eration of user interfaces. lit Proceedings of the A CM SIGSOFT/SIGPLAN
Software Symposium on Practical Software Development Environments,
pages 150-159, Dec 1986.

[191 S L Ehrenreich and Wt A Harris. JMOS: stepping outside with new cost
control. Bell Laboratories Record, Jul 1985.

[20] R Follett. Describing the complete effects of programs. In Proceedings
of the Symposium on Language Design and Programming Methodology,
pages 95-104, Sep 1979.

[21] (C Green. The design of the PST program synthesis system. In Proceedings
of the Second International Conf'renee on Software Engineering, pages 4-
18, Oct 1976.

[221 C'(' Green. A siuniary of the PSI program synthesis system. In Proceed-
ings of the Fifth /nternational Joint (onfer'nce on Artificial Intelligence,
pages 380 381, Aug 1977.

[231 M Hanimer and C P uth. ll'scarch Dirction.s 1. Softuart Technology, chap-
ter 20. MIT Press, ('ambridge, MA, 1979. titled Automating the Software
Development Proces.

[24] G Heidorn. Natural Laiguag Inputs to a Simulation Progranimning System.
Technical Report, Naval Postgraduate School, Monterey, ('A, 1972.

[25] G E Heidorn. Automatic programming through natural language dialogue:
a survey. IBM Journal of Research and Deit lopcnt, 20(4):302 313, 1976.

I



-b

[26] R C Lee, C L Chang, and R J Waldinger. An improved program-
synthesizing algorithm and its correctness. Communications of the ACM,
17(4):211-217, 1974.

[27] L S Levy. A metaprograinining method and its economic justification.
IEEE Transactions on Software Engineering, SE-12(2):272-277, 1986.

[28] W J Long. A Program Writer. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, 1977. Report LCS/TR-187.

[29] P A Luker and A Burns. Program generators and generation software.
Computer Journal, 29(4):315-321, 1986.

[30] Z Manna and R Waldinger. Synthesis: dreams =: programs. IEEE Trans-
actions on Software Engineering, SE-5(4):294-328, 1979.

,.

[31] Z Manna and R WValdinger. Toward automatic program synthesis. Corn- "-,
munications of the A(CM, 14(3):151-165, 1971.S

[32] L Paulson. A (loinpier Generator for Semantic Grammars. PhD thesis,
Stanford University, Stanford, CA, Dec 1981.

[33 F E Petry. Program Inference from Example Computations Represented by e- :

Memory Snapshot Tracs. PhD thesis, Ohio State University, Columbus,
OH, 1974.

[34] S P Reiss. Automatic compiler production: the front end. IEEE Transac-
tions on Software Engineering, SE-13(6):609 627, 1987. ,'.\

[35] D R Smith. Top-down synthesis of divide-and-conquer algorithms. Artifi-
cial Intelligence, 27(1 ):43--96, 1985.

136[ P A Subrahmanvam. An automatic/interactive software development sys- %

tern: formal basis and design. In A Wasserman, editor, Proceedings of

the IFIP WG8. I ltorkmn9 Confr,' nc" on I ,tomated Tool. for Information
.-,stern. I)esmin and -vPt lopimr r t, pages 125-146, North-lHolland, 1982.

[371 P 1) Summers. Prograin (Conqtrw on from Ezampli. PhD thesis, Yale _
University, New Haven, C"i. I)c 1975.

T3 V Vojtek, I Molnar. and P Navrat. Automatic program synthesis using
heuristics and interaction. ('omnputcrs and Artificial Intelliqence, 5(5)-429-
442, 1986.

R39] W Valdinger and 11 L.ee. 'l()W: a st,.p tw;ird automatic programming. In 0
P,. or, dimng. of the hit rnal mi,, loint (,,nf,,,nc, on .Artific al Intclhitnce, .,,..

.0.

I969. '.-

;p**"-".- , ' "- *.*.:, .,".... .. ',5' -' - S '." .' , -', -, -', "7 .-' - -- J" ". " ", d, .. ' ", . "'.;'-.', " v • ' "- " -. -"-" "• ",



.

Appendix A List of APS Systems

This is a list of some of the major automatic program synthesis systems,
all developed in the past 20 years. The systems are given in approximately
chronological order, and include the name and author of the system, a brief
description of the method of input to the system, the knowledge base (KB)
representing all information used to synthesize programs, and the method of
code generation (CG). In those cases where the method of code generation
couldn't be determined from the papers read, a question mark is given.

PROW N
R J Waldinger

Input: Conditional relation

KB: Waldinger-Lee algorithm V;"

CG: Logical manipulation via the Waldinger-Lee Algorithm

NLP(Q)%
G Heidorn

Input: A subset of natural language, on a specific domain (serving objects that
must wait in line).

KB: Rules for converting natural language to a semantic network, knowledge

of the problem domain, logical/mathematical knowledge 5.

CG: ?

PROTOSYSTEM-I
Project MAC .-

Input: English statements converted to MAPL *'

KB: Translation rules, rules for handling conventional program features

CG: Simulation of MAPL statements, with suggestions for improvement ill case
of failure

"1C
F E Petry

5, Input: Memory trace from a sample computation, list of functions, variables
and conditions used in the sample computation

V 

I

S%

'I,

' •- ' *. . . . . . .s ~ . .a . . . . . .- " " ., a "- ."%""" "-"-", ,,' . " " "" ' ,0 ,"", ,*"/ , '', ," ,.



KB: Rules for finding potential statements, for ordering candidates by likelihood r -

of working, for finding the mininmum program size

CG: Take the set of candidate statements, attempt to create a minimal flow dia-
gram. Backtrack to previous statements if we can't get a proper program.
If no program is possible, increase the number of statements allowed :.r

autoprogrammer ?

A IV Biermann, R Krishnaswainy It I Baunt, F E Petry

Input: Partial in situ traces of the program

KB: Generation of optimal flow diagranks, condition testing, induction of loops

C'G: Transformation to flow diagrams .

THESYS

P D Summers m.

Input: A set of example iuput-output pairs ,.

KB: Rules for induction on list elemuents '?'

CG: C'onvert outputs to elements of input list, look for a pattern1. If one can't " ''

be found, try introdlucing a variable X

C2:

T J Biggerstaff,.

Input: Sample input-poqsible output pairsl'

K: Algorithm for creating a funti on strategy fre generalizing to es controlylki
graphk and reformatting to a LISP program. Logical manipulation of

function requirements ', ."

('G: Generation of tha function strategy trep , control graph, and mapping the
graph to a LISP program

PSI.

(C Green et al- .' -

Input: Natural language sentences or prograim traces

KB: A set of interacting modules, converters/ translators fro internal form to
internal form; property, query and refinement rules (in PECOS)

.

%.%



CG: Two interacting modules-a code generator and an efficiency expert. The
code generator applies rules of refinement to code, establishes properties,
and tests for patterns under a prespecified heuristic agenda. The effi-
ciency expert examines potential algorithms for optimality in space-time
efficiency

programwriter
W J Long

Input: OWL-I specifications of input and output

KB: METHODs, SCHEMAs, INTENTs, IDEAs, DEFINITIONs; various infor-
mation about how to achieve subgoals, and world knowledge divided into
5 predefined interacting models-domain, argument passing and control,
data, input/output, and target language

CG: Two phases: an analyze/plan loop phase followed by a coding phase. The
analyze/plan loop orchestrates the used of METHODs, etc., to modify the
semantic network that represents the program under development. Goals
are invoked from a GOAL list, METHODs that fit are used to solve for the r
goal. SCHEMAs are used to corroborate disjoint goals. IDEAs are culled
from an idea list when current METHODs fail. When the analyze/plan
loop generates the desired program set (can be Zl program), the coding
phase constructs a LISP program

MODEL II
N S Prywes, A Pneuli, S Shastry

Input: Data structure and assertion-of-values specifications

KB: Rules on manipulation of inputs, generation of correct nested loops

CG: ?

Production Rule Mechanism
A W Biermann and D R Smith

Input: A single input-output specification in list form

KB: Abstract pattern matching rules, rules for conditional construction

CG: Generation of lambdas via application of the pattern matchers

DEDALUS
Z Manna and R Waldinger

Input: First-order logic sentences with syntactic sugar

13

-fl

-] ' '*' ' ' w - -,e ' . ' -- - , - w . ' _ _ - . - . ,, . . . , _ - _,", -". . . ", -' . -'. . - -' ,' .' *'. ' , ,,- . " ,--. -' L ', ' . - , - . ,' .' - '- ' -,' .' - . .' ." " . ." ." " ".



PROSYN

KBpu: rsto-itord r logic icutondiutionaliftyr ion tc

CG: LGic-rethed mstspcfic resoiatifor eahgabakrc f eraha

CPRSSN
DR Somt

Input: Fis-rL ogic inpit- ut-asrnoutp t h pcfctons V )]-GRj

KB: RulNBOs forc deiigenersaes pairsncdn for proteifctingn alred ciee ol

('G: Apenerateo the most specific ralnorechn goale backtrak ifwe rc an)-
uonsolv ktable goalfll

NDeR shoit

Input: Lnoical alad eto input-ou oitput assertions of th fotemplate)~ : 0

KBG: RuaBOWio wih gene rach etatcdn fraseiiainkl

specific, doinr and r' avrete

Inpu: Aplction the most spcific nteett the dividiptef~) eadconqur a

grith bakresi t al

Inut:, And upitkgoal and ait et lowpt weitght- assterons.i a clteilte

K rnsltin l inputspar reatn desr oupu cosr t

(C:~~~~~~~l Rueapianwt .~krc

TRINS4

V~~~~~~~ Ij inrim ~ a



tomb

7r/ C4..

L-

' % %

.1 . w *. 1 .e J'%F r'r r 4 ol1. 1 W~ -Z1"^ 1% 1.1

". ' J., -. k r. .-. ''-'-"- -;.'-. .'. ."."-. F." _. ."._-".. -- "" ' -".... - '; ... ' ."Z .- r.-. ,.' '.' P...-.';'' 4 ... '1'.


